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SUMMARY 

This document provides a summary of work completed by General Dynamics under the 
work unit 71840871, Speech Interfaces for Multinational Collaboration, for the period August 
2004 to November 2009 under contract FA8650-04-C-6443.  The speech technologies developed 
during this period include speech recognizers, Articulatory Feature (AF) detectors, and speech 
synthesizers.  Speech recognition systems were developed for 15 different languages, and three 
methods were investigated for improving the performance of the systems: vocal tract length 
normalization, speaker adaptive training, and recognizer output voting error reduction.  English 
AF detectors were developed using Gaussian Mixture Models (GMMs), two-class Multi-Layer 
Perceptrons (MLPs), fusion MLPs, and multi-class MLPs.  The outputs of the AF detectors were 
used to form the feature set for a speech recognizer.  Speech synthesis systems were created for 
13 different languages, and the following system modifications were investigated: expanding the 
label set to include additional contextual factors, changing the minimum description length 
control factor, and applying speaker clustering and adaption to create new voices. In addition, 
two graphical user interfaces were developed for training new voices and synthesizing speech in 
real-time. 
 The author would like to acknowledge the following groups: (1) Army Research 
Laboratory for the Dari speech corpus, (2) Cambridge University for their Hidden Markov 
Model ToolKit (HTK), (3) Carnegie Mellon University and Cambridge University for their 
Statistical Language Modeling Toolkit, (4) the Julius project team at Nagoya Institute of 
Technology for their Julius speech recognition engine, (5) Bryan Pellom of the University of 
Colorado for the SONIC speech recognizer, (6) the speech processing group at the Brno 
University of Technology, Faculty of Information Technology for their SRover software, (7) MIT 
Lincoln Laboratory for their GMM software package, (8) the International Computer Science 
Institute for their QuickNet software package, (9) Joe Frankel et al. for their AF classifiers, (10) 
Simon King et al. for the SVitchboard I corpus, (11) Karen Livescu et al. for their manual AF 
transcriptions, (12) the HTS working group for their HMM-based Speech Synthesis Toolkit, (13) 
the SPTK working group at Nagoya Institute of Technology for their Speech Signal Processing 
ToolKit, and (14) KTH for the Snack Sound Toolkit. 
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1.0 INTRODUCTION 
 

This document provides a summary of work completed by General Dynamics under the 
work unit 71840871, Speech Interfaces for Multinational Collaboration, for the period August 
2004 to November 2009 under contract FA8650-04-C-6443.  The Section 2 describes how 
speech recognition systems were developed for 15 different languages, and presents three 
methods that were investigated for improving the performance of these systems.  Section 3 
describes how articulatory feature detectors were created for English and applied to speech 
recognition tasks in English, Russian, and Dari.  Section 4 describes how speech synthesis 
systems were developed for 13 different languages, and provides a brief overview of two 
graphical user interfaces that were developed for creating new voices and synthesizing speech.  
Finally, Section 5 summarizes the work completed and provides recommendations for future 
research. 
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2.0 SPEECH RECOGNITION IN 15 LANGAUGES 
 

Speech recognition systems were developed for 15 different languages using the Hidden 
Markov Model (HMM) ToolKit (HTK).  This chapter discusses these recognition systems and 
presents three methods that were investigated to improve the performance of these systems: 
Vocal Tract Length Normalization (VTLN), Speaker Adaptive Training (SAT), and the ROVER 
technique.  Section 2.1 provides an overview of the baseline recognition systems developed for 
each language.  Section 2.2 discusses VTLN and presents results obtained on English, Mandarin, 
and Russian.  Section 2.3 provides an overview of SAT and presents results obtained on Russian 
and Dari.  Lastly, Section 2.4 describes the ROVER technique. 
 
2.1 Baseline Recognition Systems 
 

This section discusses the baseline speech recognition systems that were developed for 
Arabic, Croatian, Dari, English, French, German, Japanese, Korean, Mandarin, Pashto, Russian, 
Spanish, Tagalog, Turkish, and Urdu.  A total of seven different corpora were used to obtain 
coverage of all 15 languages, including the Topic Detection and Tracking (TDT4) Multilingual 
Broadcast News corpus [1], Phase II of the Wall Street Journal (WSJ1) corpus [2], CALLHOME 
Mandarin Chinese [3], HUB4 Mandarin Broadcast News Speech [4], GlobalPhone [5], the 
Language And Speech Exploitation Resources (LASER) Advanced Concept Technology 
Demonstration corpus, and the ARL Dari corpus.  The TDT4, WSJ1, CALLHOME, and HUB4 
corpora are available from the Linguistic Data Consortium, and the ARL Dari corpus was 
collected by Army Research Laboratory with support from AFRL.  Table 1 lists the corpora used 
for each language, the speaking style of each corpus, the total amount of training data used to 
develop the recognizers, and the vocabulary size. 
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Table 1: Overview of Corpora 

Language Corpus Speaking Style Hours Vocabulary Size 
Arabic TDT4 Broadcast News 37 47k 

Croatian GlobalPhone Read 12 22k 
Dari ARL Read 20 2k 

English WSJ1 Read 18 10k 
French GlobalPhone Read 20 21k 
German GlobalPhone Read 14 23k 
Japanese GlobalPhone Read 26 18k 
Korean GlobalPhone Read 16 50k 

Mandarin CALLHOME Conversational 26 8k 
Mandarin HUB4 Broadcast News 30 18k 

Pashto LASER Read 17 6k 
Russian GlobalPhone Read 18 29k 
Spanish GlobalPhone Read 17 19k 
Tagalog LASER Read 9 5k 
Turkish GlobalPhone Read 13 15k 

Urdu LASER Read 45 8k 
 
 

HMM-based recognition systems were trained for each language using HTK [6].1

 Trigram Language Models (LMs) were created for each language using the Carnegie 
Mellon University (CMU)-Cambridge Toolkit [7].

  The 
feature set consisted of 12 Mel-Frequency Cepstral Coefficients (MFCCs), with cepstral mean 
subtraction, plus an energy feature.  Delta and acceleration coefficients were also included to 
form a 39 dimensional feature set.  The acoustic models were state-clustered cross-word 
triphones.  All HMMs included three states, with diagonal covariance matrices, and the state 
clustering was performed using a decision tree.  An average of 16 mixture components were used 
for each HMM state. 

2  The LM probabilities were estimated using 
the train partition of each language, but the vocabulary was expanded to include all words in the 
corpus.  Decoding was performed using both the HTK decoder HDecode and the Julius decoder 
[8].3

  

  The Word Error Rates (WERs) for each language are shown in Figure 1.  HDecode yielded 
better performance than Julius in all languages. 

                                                 
1 Available at http://htk.eng.cam.ac.uk 
2 Available at http://www.speech.cs.cmu.edu 
3 Available at http://julius.sourceforge.jp 
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Figure 1: WER for each Language (HDecode and Julius); (*Mandarin is expressed in 

character error rate) 

 
2.2 Vocal Tract Length Normalization 
 

Vocal Tract Length Normalization (VTLN) attempts to compensate for different vocal 
tract lengths by linearly warping the frequency axis when performing filterbank analysis.  
Warping factors α for each speaker in the training set were selected using the following 
procedure [9].  First, single-mixture monophone HMMs with non-normalized MFCC features4

The procedure used to select the warping factor α for each utterance in the test set can be 

 
were estimated from the complete training set of all speakers.  Next, each utterance was 
phonemically aligned using the non-normalized HMMs and MFCC features computed using 
warping factors α=0.80,0.82,0.84,...,1.20.  The value of α that gave the maximum score was 
selected for each speaker.  Lastly, multiple-mixture triphone HMMs were estimated from the 
complete training set using the normalized MFCC features. 

                                                 
4 The  term normalization is used to here to refer to MFCC features computed from a warped filterbank using α 
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summarized as follows.  First, non-normalized multiple-mixture triphone HMMs with non-
normalized MFCC features were used to hypothesize the word sequence for the utterance.  Next, 
the utterance was phonemically aligned using the normalized single-mixture monophone HMMs 
and  MFCC features computed using warping factors α=0.80,0.82,0.84,...,1.20.  The value of α 
that gave the maximum score was selected for the utterance.  Lastly, the normalized multiple-
mixture triphone HMMs and normalized MFCC features were used to hypothesize the word 
sequence.  The VTLN procedure was evaluated on the WSJ1 English, CALLHOME Mandarin, 
and GlobalPhone Russian. The results for each language are shown in Table 2.  Applying VTLN 
reduced the error rate by 1.0% on English, 1.7% on Mandarin, and 0.3% on Russian. 

 
Table 2: WER for English and Russian, and Character Error Rate for Mandarin 

Language No VTLN With VTLN  
English 11.8% 10.8% 

Mandarin 65.1% 63.4% 
Russian 29.6% 29.3% 

 

2.3 Speaker Adaptive Training 

Speaker Adaptive Training (SAT) is a technique used to train Speaker Independent (SI) 
acoustic models that integrates speaker normalization as part of the model estimation procedure.  
The procedure used to implement SAT can be summarized as follows.  First, multiple-mixture 
triphone HMMs were estimated from the complete training set of all speakers.  Next, 
Constrained Maximum Likelihood Linear Regression (CMLLR)5

The decoding procedure can be summarized as follows.  First, the original SI acoustic 
models were used to hypothesize the word sequence for each utterance.  Next, each utterance 
was phonemically aligned using the SI acoustic models.  These alignments were used to compute 
a single set of CMLLR transforms for each speaker using the SAT models.  Lastly, the SAT 
models and CMLLR transforms were used to hypothesize the word sequence for each utterance.  
The SAT technique was evaluated on the GlobalPhone Russian and ARL Dari.  The results are 
shown in Table 3.  Applying SAT reduced the WER by 4.5% on Russian and 3.1% on Dari. 

 was used to compute a set of 
linear transformations for each speaker.  Lastly, the SI models were re-estimated using the 
speaker transforms to adapt the training features.  This procedure was repeated three times to 
train the final model. 

 
Table 3: SAT for Russian and Dari 

Language No SAT With SAT 
Russian 29.6% 25.1% 

Dari 26.6% 23.5% 
 
                                                 
5 CMLLR is a feature adaptation technique that shifts the feature vectors such that each HMM state in the model is 

more likely to have generated the features 
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2.4 ROVER 
 

Recognizer Output Voting Error Reduction (ROVER) [10] is a technique for combining 
the hypothesized word sequences from multiple recognizers.  The ROVER technique first aligns 
the word sequences output from the different recognizers and then selects the final word 
sequence according to the frequency of occurrence.  This technique was evaluated on 12 
different languages using the hypothesized word sequences from the HDecode, Julius, and 
SONIC [11] decoders.  The SRover program from the Brno University of Technology6

 

 was used 
to apply ROVER.  Figure 2 shows the error rates obtained on each language.  An improvement in 
system performance was obtained on all languages except English.  Compared to the best 
individual system, the largest decrease in WER was 2.4% on French. 

                                                 
6 Available at http://speech.fit.vutbr.cz 
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Figure 2: WER for each Language (HDecode, Julius, SONIC and ROVER); (*Mandarin is 

expressed in character error rate) 
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3.0 ARTICULATORY FEATURE DETECTION 
 

Articulatory Features (AFs) describe the way in which speech sounds are produced.  One 
of the most popular methods for classifying speech sounds using AFs is the International 
Phonetic Alphabet (IPA) [12].  Consonants are defined by AFs that describe the place of 
articulation, manner of articulation, and voicing status.  Vowels are classified using AFs that 
describe both the tongue position and the shape of the lips.  This chapter discusses two methods 
that were investigated for detecting English AFs.  Section 3.1 describes how fusion-based AF 
detectors were created using Gaussian Mixture Models (GMMs) and two-class Multi-Layer 
Perceptrons (MLPs).  Section 3.2 describes how multi-class MLPs were developed for English 
and incorporated into a Russian and Dari speech recognizer. 
 
3.1 Fusion-based AF Detectors 
 

This section discusses how fusion-based AF detectors were created for English and used 
in an HMM-based phoneme recognizer.  Sections 3.1.1 and 3.1.2 describe how GMMs and 
MLPs were used to create AF detectors.  Section 3.1.3 discusses two different procedures that 
were investigated for fusing the scores from the GMMs and MLPs, and presents results obtained 
on TIMIT.  Lastly, Section 3.1.4 presents results obtained on the CSLU Multi-language 
Telephone corpus.  Table 4 lists the AFs used to describe English speech sounds, with the 
exception of silence (34), where the number in parenthesis indicates the feature number. 
 
 

Table 4: AFs for English Consonants and Vowels 

CONSONANTS (0) 

Place bilabial (1), labiodental (2), labialvelar (3), dental (4), alveolar (5), 
 postalveolar (6), retroflex (7), palatal (8), velar (9), glottal (10) 

Manner plosive (11), nasal (12), tap or flap (13), fricative (14),  
approximant (15), lateral approximant (16), affricate (17) 

Voicing voiced (18), voiceless (19) 
 

VOWELS (20) 
Tongue 
Height 

close (21), near-close (22), mid (23),  open-mid (24), 
near-open (25), open (26) 

Tongue 
Fronting 

front (27), near-front (28), central (29), 
near-back (30), back (31) 

Lip Shape rounded (32), unrounded (33) 
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3.1.1 GMM-based AF Detectors.  GMM-based AF detectors were trained on the WSJ1 
corpus using the GMM software package from MIT Lincoln Laboratory [13].  For each AF, a 
GMM was trained using frames where the feature was present, and a second GMM was trained 
using frames where the feature was absent.  All models used 256 mixture components with 
diagonal covariance matrices.  The feature set consisted of 12 MFCCs, with cepstral mean 
subtraction, plus an energy feature.  Delta and acceleration coefficients were also included to 
form a 39 dimensional feature vector. 

The scores for each AF were calculated as follows.  Denote the presence of an AF as f 
and the absence of an AF as g.  If we consider the speech feature vector x, then 
 

)(log)(log)|(log)|(log
)|(
)|(log gpfpgxpfxp

xgp
xfp

−+−=  (1) 

 
The probabilities p(x|f) and p(x|g) were calculated from the feature-present and feature-absent 
GMMs, respectively.  The probabilities p(f) and p(g) were estimated from the training data by 
counting the occurrences of each AF. 
 

3.1.2 MLP-based AF Detectors.  MLP-based AF detectors were trained on the WSJ1 
corpus using the ICSI QuickNet software package.7

 

  A three-layered MLP (input: 39 units, 
hidden: 100 units, output: 2 units) was used to model each AF.  The same MFCC feature set 
described in Section 3.1.1 was used as the input, and sigmoid activation functions were used on 
the hidden layer.  The softmax function was used as the output activation function during 
training; however, it was removed when scoring the MLPs so that the outputs more closely 
approximated a Gaussian distribution.  The final score for each AF was calculated by subtracting 
the output of the absent unit from the output of the present unit. 

3.1.3 Score Fusion on TIMIT.  This section describes two procedures that were 
investigated for fusing the scores from the GMM- and MLP-based AF detectors [14].  Both 
methods trained a fusion MLP for each AF to combine the scores.  All fusion MLPs were trained 
on the TIMIT corpus [15]. Fusion-1 combined the scores from the GMM- and MLP-based AF 
detectors for a given AF to form the final score for that AF.  For example, the fusion MLP for the 
AF plosive used input features consisting of the output of the GMM-based plosive detector and 
the MLP-based plosive detector.  Fusion-2 combined the scores from all of the GMM- and MLP-
based AF detectors to form the final score for each AF; thus, the fusion MLP for each AF was 
provided information about all AFs from two different classifiers. 

All fusion MLPs included 100 hidden units with sigmoid activation functions, and used 
the softmax output activation function for training.  The fusion MLPs included a context window 
of nine; that is, the MLPs used the vectors at times t-4,t-3,···,t+3,t+4 as input to classify the 
vector at time t.  As in Section 3.1.2, the output activation function was removed prior to scoring 
and the score for the AF was calculated by subtracting the output of the absent unit from the 
output of the present unit. 

Figure 3 shows the AF detection results obtained on the TIMIT test set.  Each symbol 
represents the average Equal Error Rate (EER) of the individual detectors for the AF groups 
shown in Table 4.  For the place and manner classifiers, the GMM-based detectors outperformed 

                                                 
7 Available at http://www.icsi.berkeley.edu/Speech/qn.html 
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the MLP-based detectors; for all other groups the MLPs yield lower EERs.  Fusion-1 yielded an 
average decrease in EER of 4.7% absolute compared to the best GMM- or MLP-based detector.8

 

  
The best overall performance was obtained using the Fusion-2 procedure, which yielded an 
average decrease in EER of 8.2% absolute compared to the best GMM- or MLP-based detector. 

 
Figure 3: Average EER of the AF Detectors on the TIMIT Test Set 

The scores from the different AF detectors were used to form the feature set for an 
HMM-based phoneme recognizer.  First, a vector was formed using the scores from the 
individual AF detectors.  Next, these feature vectors were processed with a Karhunen-Loéve 
Transformation (KLT) that was estimated on the TIMIT train set.  The KLT was included to 
decorrelate the individual AF scores so that diagonal covariance matrices could be used in the 
HMMs.  Lastly, delta features were appended.  Monophone and triphone HMMs were created for 
each feature set.  All systems used three state HMMs with 16 mixtures per state and diagonal 
covariance matrices.  Decoding was performed using a bigram phoneme LM that was estimated 
from the TIMIT train set using the CMU-Cambridge Toolkit.  The MFCC feature set described in 
Section 3.1.1 was used for the baseline system. 

Table 5 shows the Phoneme Error Rate (PER) obtained with each feature set on the 
TIMIT test set.  The features created using the scores from the GMM-based detectors yielded the 
worst performance.  An improvement in recognition performance was obtained using the scores 
from the MLP-based detectors, however, the PER was still higher than that of the baseline 
MFCC system.  The Fusion-1 features outperformed both the GMM and MLP features sets, 
although an increase in performance over the baseline MFCC system was only obtained with 
monophone models.  The best performance was obtained using the Fusion-2 features. 
 
 

                                                 
8 The term best is used here to refer to the detector with the minimum EER for each AF 
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Table 5: PER Obtained on the TIMIT Test Set 

 MFCC GMM MLP Fusion-1 Fusion-2 
Monophones 39.5% 42.1% 39.9% 38.8% 35.8% 

Triphones 35.9% 40.8% 38.4% 38.4% 35.6% 
 
 
It is worth noting that the Fusion-2 monophone system yielded comparable performance 

to the MFCC triphone system.  The option of using monophone instead of triphone models with 
the Fusion-2 features can be a significant advantage in terms of decoding time.  Excluding the 
time required for feature extraction, decoding with each triphone system took approximately 750 
minutes, whereas decoding with monophones was completed in about 20 minutes. 
 

3.1.4 Score Fusion on CSLU.  This section discusses AF detection on the CSLU Multi-
Language corpus [16].  Whereas TIMIT consists of lab-quality recordings of read speech with 
broad phonetic coverage, the CSLU corpus includes spontaneous telephone speech.  Thus, these 
corpora differ in speaking style (read vs. spontaneous), channel type (close-talking microphone 
vs. telephone), balance of phonetic coverage, and sampling rate. 

The WSJ1l and TIMIT corpora were first downsampled to 8 kHz and a second set of 
Fusion-2 AF detectors were retrained.  Next, a set of Fusion-2 AF detectors were trained on the 
CSLU corpus.  All AF detectors were created using the same procedure described in Sections 
3.1.1-3.1.3.  It should be emphasized that all fusion MLPs used scores from GMM- and MLP-
based detectors trained on WSJ1 as input.  Thus for the CSLU corpus, the base GMM- and MLP-
based detectors were used for a different speaking style (read vs. spontaneous) and channel 
(close-talking microphone vs. telephone). 
 Figure 4 shows the EERs obtained with the Fusion-2 AF detectors.  Each symbol type 
represents a different train-test combination.  For example, TIMIT8-CSLU shows the detection 
performance obtained on the CSLU test set using Fusion-2 AF detectors trained on the TIMIT 
corpus downsampled to 8 kHz.  The individual symbols represent the EER of each AF detector, 
where the feature numbers correspond to those given in Table 4.  The best overall performance 
was obtained on the TIMIT8-TIMIT8 condition. The average EER across all AFs was 8.6%.  
When evaluated on the CSLU corpus, the fusion MLPs trained on TIMIT8 yielded an average 
EER of 14.1%, which is an increase of 5.5% compared to the results on TIMIT8.  The average 
EER of the Fusion-2 AF detectors trained and evaluated on CSLU was 11.5%. 
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Figure 4: EER of the AF Detectors on the CSLU Test Set 
 
 From Figure 4 we can see that some of the AF detectors are more robust across both 
corpora than others.  For example, the increase in EER on TIMIT8-CSLU compared to TIMIT8-
TIMIT8 is less than 3.5% for the AFs labialvelar (3), lateral approximant (16), voiced (18), 
vowel (20), close (21), near-back (30), and unrounded (33).  The increase in EER is greater than 
8.0% for the AFs alveolar (5), plosive (11), fricative (14) and voiceless (19).  This suggests that 
certain AFs are less affected by speaking style and channel type than other AFs. 
 As in Section 3.1.3, the scores from the fusion MLPs were used to form the feature set for 
an HMM-based phoneme recognizer.  Monophone and triphone HMMs were trained for each 
feature set on the CSLU corpus.  The monophone models included 32 mixtures per state, and the 
triphone models included 12 mixtures per state.  All systems used diagonal covariance matrices.  
Decoding was performed using a trigram phoneme LM that was estimated from the CSLU train 
partition using the CMU-Cambridge Toolkit.  The MFCC feature set described in Section 3.1.1 
was used for the baseline system.  Table 6 shows the PER obtained with each feature set on the 
CSLU test set.  Both the TIMIT8 and CSLU Fusion-2 feature sets outperform the MFCC system.  
The best performance was obtained with the CSLU Fusion-2 features: compared to MFCCs, the 
PER was reduced by 2.0% absolute when decoding with either monophone or triphone models. 
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Table 6: PER Obtained on the CSLU Test Set 

 MFCC TIMIT8 Fusion-2 CSLU Fusion-2 
Monophones 49.4% 48.6% 47.4% 

Triphones 48.3% 47.4% 46.3% 
 
 
3.2 AF Detection using Multi-Class MLPs 
 

This section discusses how multi-class MLPs were used to create English AF detectors.  
Section 3.2.1 describes the procedure used to train the MLPs.  Section 3.2.2 presents detection 
results obtained on SVitchboard and describes how the scores from the MLPs were used as the 
feature set for a speech recognizer.  Lastly, Section 3.2.3 presents results obtained on Russian 
and Dari.  Table 7 lists the features that were used to describe English speech sounds. 
 

Table 7: Features used to Describe English Speech Sounds [17] 

Group Feature Values 

Place alveolar, dental, labial, labiodental, lateral, none, postalveolar, 
rhotic, velar, silence 

Degree approximant, closure, flap, fricative, vowel, silence 
Nasality -, +, silence 

Rounding -, +, silence 
Glottal State aspirated, voiceless, voiced, silence 

Vowel aa, ae, ah, ao, aw1, aw2, ax, axr, ay1, ay2, eh, er, ey1, ey2, ih, iy, ix, 
ow1, ow2, oy1, oy2, uh, uw, none, silence 

Height high, low, mid, mid-high, mid-low, very-high, none, silence 
Frontness back, front, mid, mid-back, mid-front, none, silence 

 
 

3.2.1 MLP-based AF Detectors.  Two sets of MLPs were trained for each of the eight 
AF groups shown in Table 7.  The first set used MFCCs as input, and the second set used 
Perceptual Linear Prediction (PLP) coefficients.  The MFCC feature set was the same as 
described in section 3.1.1, except that both mean and variance normalization were applied on a 
per-conversation side basis.  The PLP feature set included 12 PLP cepstral coefficients, plus 
energy, delta, and acceleration coefficients.  As with the MFCCs, mean and variance 
normalization were also applied. 

The MLPs were trained on the Fisher corpus [18, 19] using the ICSI QuickNet software 
package.  A context window of nine was used on the input layer, and the number of hidden units 
for each MLP was chosen using the same procedure as described in [17].  Sigmoid activation 
functions were used on the hidden layer.  The number of output units for each MLP was set to the  
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number of  f eature va lues f or t hat AF group, a nd t he s oftmax f unction w as us ed a s t he out put 
activation function. 
 

3.2.2 AF Detection on SVitchboard.  This section discusses AF detection on the 
SVitchboard corpus [20].  SVitchboard is a small vocabulary corpus that includes conversational 
telephone speech.  A subset of 78 utterances includes AF alignments that were manually 
produced [21].  Figure 5 shows the frame level accuracy of the MLPs trained on Fisher using 
MFCC and PLP coefficients as input.  For comparison purposes, the detectors from [17] were 
also evaluated on these utterances.  These detectors, referred to as Frankel in this document, use 
the same network typology and PLP feature set as the MLPs described in section 3.2.1.  Overall, 
similar performance is obtained with each set of MLPs.  The largest difference in accuracy is 
2.0% (Frankel vs. PLP degree).  The lowest accuracy was 75.8% (MFCC place), and the highest 
accuracy was 95.4% (Frankel nasality). 

 

 
 

Figure 5: Frame Level Accuracy of the MLP-based AF Detectors on the SVitchboard 
Corpus 

The scores from the MLPs were used to form the feature set for an HMM-based speech 
recognizer.  First, a vector was formed using the scores from the individual AF detectors.  When 
computing these scores, the output activation function was removed so that the scores more 
closely approximated a Gaussian.  Next, these feature vectors were processed with a KLT that 
was estimated on the SVitchboard train set, and the top 26 dimensions were retained.  This 
feature vector was appended to the PLP feature set described in Section 3.2.1 to form a 65 
dimensional vector. 

Within-word triphone HMMs were trained for each feature set.  All systems used three 
state HMMs with 12 mixtures per state and diagonal covariance matrices.  Decoding was 
performed using a bigram LM that was estimated from the SVitchboard train set using HTK.  
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The PLP features formed the baseline system.  Table 8 shows the WER obtained with each 
system.  From Table 8 we can see that incorporating the scores from the MLPs yielded an 
improvement in system performance.  The best WER was obtained with the PLP system that 
incorporated the Frankel MLPs: compared to the baseline PLP system, a reduction in WER of 
6.0% was obtained.  Note also that the MLP system with PLP input features yielded better 
performance than the MLP system with MFCC input features. 
 

Table 8: WER on the SVitchboard 500 Word Vocabulary Task 

Features WER 
PLP 50.6% 
PLP + Frankel 44.6% 
PLP + MLPs with PLP input 44.8% 
PLP + MLPs with MFCC input 46.0% 

 

3.2.3 Cross-Lingual AF Detection.  The Frankel MLPs were also evaluated on the 
GlobalPhone Russian and ARL Dari.  Whereas the Frankel MLPs were trained on English 
conversational telephone speech, the GlobalPhone Russian and ARL Dari corpora consist of read 
microphone speech.  Thus, these corpora differ not only in language, but also in speaking style 
(conversational vs. read), channel type (telephone vs. microphone), and sampling rate. 
 The GlobalPhone Russian and ARL Dari corpora were first downsampled to 8 kHz and 
PLP features were extracted.  These features were used as input to the Frankel MLPs, which 
were evaluated with the output activation functions removed.  Next, a vector was formed using 
the scores from the individual AF detectors and processed with a KLT that was estimated on the 
train partition of each language.  The top 26 dimensions were retained and appended to the 
MFCC feature set described in Section 2.1.  This feature vector was used to train an HMM-based 
speech recognizer for each language.  The HMM systems were trained using the same procedure 
described in Section 2.1 and decoding was performed using HDecode.  The WER for each 
language is shown in Table 9.  Incorporating the Frankel MLPs reduced the WER by 1.6% on 
Russian and 1.4% on Dari. 

 
Table 9: WER on Russian and Dari 

Language MFCC MFCC + Frankel 
Russian 29.6% 28.0% 
Dari 26.4% 25.0% 
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4.0 SPEECH SYNTHESIS IN 13 LANGUAGES 
 

Speech synthesis systems were developed for 13 different languages using the Hidden 
Markov Model (HMM) Speech Synthesis ToolKit (HTS).  This chapter describes these systems 
and provides an overview of two different Graphical User Interfaces (GUIs) that were developed 
for creating new voices and synthesizing speech.  Section 4.1 provides an overview of the 
baseline synthesis systems.  Section 4.2 describes three English and two Urdu speech synthesis 
systems that were created using an expanded model set.  Section 4.3 discusses the effect of 
modifying the Minimum Description Length (MDL) control factor.  Section 4.4 discusses 
speaker clustering and adaptation for creating English and Mandarin voices.  Lastly, Section 4.5 
provides a brief overview of the GUIs that were developed. 
 
4.1 Baseline Synthesis Systems 
 

This section discusses the baseline synthesis systems that were developed for Arabic 
Iraqi, Croatian, Dari, English, French, German, Mandarin, Pashto, Russian, Spanish, Tagalog, 
Turkish, and Urdu.  A total of six different corpora were used to obtain coverage of all languages, 
including the Spoken Language Communication and Translation System for Tactical Use 
(TRANSTAC) corpus, GlobalPhone, ARL, CMU Arctic [22], HUB4, and LASER.  All of these 
corpora include speech data that were recorded with a 16 kHz sampling frequency.  The CMU 
Arctic database was developed specifically for speech synthesis and includes automatically 
generated time-aligned transcriptions; all other corpora are only transcribed at the utterance 
level.  Phoneme alignments for the TRANSTAC, GlobalPhone, ARL, HUB4, and LASER 
corpora were automatically generated using SONIC. 

HMM-based speech synthesis systems were developed for each language using HTS-2.0 
[23].9  The feature set consisted of 25 Mel Cepstral Coefficients and the logarithm of the 
fundamental frequency (F0).  Prior to computing the features, the DC mean was removed from 
each waveform file and amplitude normalization was applied to several of the corpora.  The Mel 
Cepstral coefficients were calculated using the Speech Signal Processing ToolKit (SPTK),10 and 
the F0 values were estimated using the ESPS method implemented in snack.11

Cross-word triphone Multi-Space probability Distribution (MSD)-HMMs [24] were 
trained for each language.  All MSD-HMMs included five states with diagonal covariance 
matrices, and the state durations for each triphone were modeled by a Gaussian distribution.  
Decision tree based clustering was applied to the Mel Cepstrum, F0, and state duration 
distributions independently; thus, two decision trees were created for each MSD-HMM state, 
plus an additional decision tree for the state duration model.  Table 10 lists the voices that were 
created for each language, the corpora used, the number of speakers used to train the voices, and 
the total amount of training data used to develop the synthesizers. 

  Delta and 
acceleration coefficients were also included to form a 78 dimensional feature vector.  

  

                                                 
9 Available at http://hts.sp.nitech.ac.jp 
10 Available at http://sp-tk.sourceforge.net 
11 Available at http://www.speech.kth.se/snack 
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Table 10: Overview of Voices Created 

Language Corpus Voices Speaker Count Hours 

Arabic Iraqi TRANSTAC Speaker1 
Speaker2 

370 
30 

10 
3 

Croatian GlobalPhone Male 
Female 

32 
48 

5 
7 

Dari ARL Male1 
Male2 

15 
15 

2 
2 

English CMU Arctic 
Male 

Female 
SLT 

4 
2 
1 

3 
2 
1 

French GlobalPhone Male 
Female 

39 
40 

10 
11 

German GlobalPhone Male 
Female 

60 
5 

13 
1 

Mandarin HUB4 

Male 
Wang Jianchuan 

Female 
Fang Jing 

10 
1 
8 
1 

2 
1 
2 
1 

Mandarin GlobalPhone Male 15 4 

Pashto LASER Random1 
Random2 

10 
10 

1 
1 

Russian GlobalPhone Male 
Female 

49 
44 

9 
9 

Spanish GlobalPhone Male 
Female 

38 
46 

8 
10 

Tagalog LASER Male 
Female 

20 
28 

2 
4 

Turkish GlobalPhone Male 
Female 

24 
60 

4 
10 

Urdu LASER Male 
Female 

76 
84 

17 
20 

 

4.2 Full-Context Models 

This section discusses the English and Urdu speech synthesizers that were created using 
an expanded model set.  As mentioned in Section 4.1, the baseline synthesis systems for each 
language used cross-word triphone models.  Although these models produce intelligible speech, 
there are numerous other contextual factors that can affect the overall prosody and naturalness of 
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speech.  In order to incorporate these contextual factors, the triphone labels for each speech 
database have to be expanded to include all features of interest.  For example, the labels supplied 
with the HTS demos for the CMU Arctic database consist of 53 different contextual features, 
including syllable, accent, stress, part-of-speech, word, and phrase information.  These labels are 
then used to define the acoustic models; thus, a separate MSD-HMM is trained for each phoneme 
that appears in a different context.  Note that this can result in a very large model set prior to 
clustering.  For example, the training data for the English SLT voice includes 38866 phoneme 
instances: using cross-word triphone labels requires 9480 unique MSD-HMMs, whereas using 
the expanded label set requires 38765 unique MSD-HMMs.  An expanded set of labels were 
derived for Urdu that included syllable, word, and phrase information.  These labels included a 
total of 31 different contextual features.  Syllable information was explicitly marked in the 
pronunciation lexicon, and phrase information was derived by assigning a break wherever 
silence was labeled.  Table 11 lists the expanded label set derived for Urdu. 
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Table 11: Expanded Label Set for Urdu 

p1 
p2 
p3 
p4 
p5 
p6 
p7 

the phoneme identity before the previous phoneme 
the previous phoneme identity 
the current phoneme identity 
the next phoneme identity 
the phoneme after the next phoneme identity 
position of the current phoneme in the current syllable (forward) 
position of the current phoneme in the current syllable (backward) 

a1 the number of phonemes in the previous syllable 
b1 
b2 
b3 
b4 
b5 
b6 

the number of phonemes in the current syllable 
position of the current syllable in the current word (forward) 
position of the current syllable in the current word (backward) 
position of the current syllable in the current phrase (forward) 
position of the current syllable in the current phrase (backward) 
name of the vowel of the current syllable 

c1 the number of phonemes in the next syllable 
d1 the number of syllables in the previous word 
e1 
e2 
e3 

the number of syllables in the current word 
position of the current word in the current phrase (forward) 
position of the current word in the current phrase (backward) 

f1 the number of syllables in the next word 
g1 
g2 

the number of syllables in the previous phrase 
the number of words in the previous phrase 

h1 
h2 
h3 
h4 

the number of syllables in the current phrase 
the number of words in the current phrase 
position of the current phrase in this utterance (forward) 
position of the current phrase in this utterance (backward) 

i1 
i2 

the number of syllables in the next phrase 
the number of words in the next phrase 

j1 
j2 
j3 

the number of syllables in this utterance 
the number of words in this utterance 
the number of phrases in this utterance 

 

Each of the three English voices and the two Urdu voices were retrained using the 
expanded labels.  Overall, there was not a substantial improvement in voice quality.  This may be 
due to the limited amount of speech data available to train different models for each phoneme in 
a particular context. 

 
 

 



21 
 

4.3 MDL Control Factor 
 

Decision tree clustering in HTS is based on the MDL criterion [25].  The MDL criterion 
is used for selecting the questions when splitting nodes, and deciding when to stop growing the 
decision trees.  A control factor λ is used to weight the penalty that the MDL criterion imposes 
for model complexity.  As λ is increased, the penalty for a large model become larger and the 
stopping criterion is met sooner (thus producing a decision tree with fewer leaves).  The English 
male and female voices described in Section 4.2 were retrained using λ = 1.0,0.7,0.4.  The total 
number of leaves obtained for each λ is shown in Figure 6.  As λ is increased, the total number of 
leaves for each of the decision trees decreases. 

  

 
Figure 6: Total Number of Leaves Generated for the English Male and Female Voice when 

Modifying the MDL Control Factor λ 
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4.4 Speaker Clustering and Adaptation 

This section discusses how speaker clustering and adaptation were used to create voices 
for Mandarin and English.12

A total of 53 English speech synthesis systems were trained on Phase I of the Wall Street 
Journal (WSJ0) corpus [26] and WSJ1.  These systems were developed using HTS-2.1.

  A total of 52 different Mandarin speech synthesis systems were 
trained on the GlobalPhone corpus using groups of three or more speakers.  The speaker groups 
were defined based on the individual speakers F0 values and/or speaker recognition scores.  Two 
additional voices were also created on the HUB4 Mandarin corpus by adapting the Male voice 
using speech from Wang Jianchuan, and adapting the Female voice using speech from Fang Jing.  
The adaptation transforms were estimated using Constrained Maximum Likelihood Linear 
Regression (CMLLR). 

13

 

  Cross-
word triphone MSD Hidden Semi-Markov Models (HSMMs) [27] were created for each voice 
using the same feature set as described in Section 4.1.  As with the other corpora, the phoneme 
alignments were automatically generated using SONIC.  The first 25 voices were created using 
groups of three or more speakers.  The speaker groups were defined based on speaker 
recognition scores: 19 groups of speakers were derived from a speaker confusion matrix, and the 
remaining six groups were derived using a spectral clustering algorithm [28].  Next, one set of 
MSD-HSMMs were trained using 3600 utterances from nine different speakers (~400 utterances 
from each speaker), and a second set of MSD-HSMMs were trained using 3502 utterances from 
20 different speakers (~200 utterances from each speaker).  These models were adapted using 
speech from one of 22 different speakers to create the remaining 28 voices.  Adaptation was 
performed using Constrained Structural Maximum-A-Posteriori Linear Regression (CSMAPLR), 
followed by MAP adaptation [29]. 

4.5 Synthesis GUIs 
 

This section describes two GUIs that were developed for training and evaluating speech 
synthesizers.  The first interface can be used to setup a speech synthesis experiment.  This 
program allows the user to choose a set of speakers to train the voice and adjust system 
parameters related to speech analysis, model settings, and synthesis.  Figure 7 shows two 
instances of the interface: the top one shows the speaker selection dialog, and the bottom one 
shows the spectrum analysis dialog.  Once all configuration options have been specified, this 
program creates the makefiles for training and evaluating the system. 
  

                                                 
12 The speaker recognition experiments, F0 analysis, and speaker cluster definitions described in this section 

(except for those derived using the spectral clustering algorithm) were generated by Mr. Eric Hansen 
13 Available at http://hts.sp.nitech.ac.jp 
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Figure 7: GUI for Configuring a Speech Synthesis Experiment; speaker selection 
dialog is shown on top, and the spectrum analysis dialog is shown on the bottom 
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The second interface can be used to synthesize speech, modify pronunciations, and create 
new voices by modifying the synthesis parameters.  The text to synthesize can be entered using 
either the keyboard or read from a text file, and the pronunciations can be modified and saved on 
a per-speaker basis.  The following synthesis parameters can be modified: all-pass constant, post-
filtering coefficient, speech speed rate, multiplicative and additive constants for F0, 
voiced/unvoiced threshold, spectrum and F0 global variance weights, amplitude normalization 
constant, maximum state duration variance, and model interpolation coefficients.  Figure 8 shows 
the main interface and pronunciation editor.  
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Figure 8: GUI for Synthesizing Speech; the main interface is shown 
on top, and the pronunciation editor is shown on the bottom 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

This document summarized work completed by General Dynamics during the period 
August 2004 to February 2009.  Speech recognition systems were developed for 15 different 
languages using HTK.  Three methods were investigated for improving the performance of these 
systems: VTLN, SAT, and the ROVER technique.  Applying VTLN yielded improvements of 
1.0% on English, 1.7% on Mandarin, and 0.3% on Russian.  SAT reduced the WER by 4.5% on 
Russian and 3.1% on Dari.  The ROVER technique yielded improvements in system 
performance of up to 2.4%.  Given the substantial gains in system performance obtained with 
SAT, recommendations for future work include evaluating SAT across all languages, 
investigating how much speech data is needed from a single speaker to obtain an improvement in 
performance, and implementing an automatic method for detecting speaker changes and 
clustering speakers so that SAT can be applied to data where the speaker boundaries are 
unknown (i.e., broadcast news).  

AF detectors were developed for English using GMMs, two-class MLPs, fusion MLPs, 
and multi-class MLPs.  The outputs of the detectors were used to form feature sets for HMM-
based phoneme and word recognizers.  On TIMIT, the Fusion-2 feature set yielded an 
improvement in PER of 3.7% compared to an MFCC system when decoding with monophones.  
On CSLU, the Fusion-2 features yielded improvements of 2.0% PER compared to MFCCs when 
decoding with either monophone or triphone models.  On SVitchboard, appending the scores 
from the multi-class MLPs to PLP features yielded an improvement in WER of 6.0%.  Finally, 
appending the scores from the English multi-class MLPs to MFCC features reduced the WER by 
1.6% on Russian and 1.4% on Dari.  Recommendations for future work include evaluating the 
English AF detectors across all languages, investigating methods for adapting the multi-class 
MLPs to different languages, and using alternative acoustic features for input to the MLPs. 

Speech synthesis systems were developed for 13 different languages using HTS.  Four 
methods were investigated for modifying these systems: expanding the model set to include 
additional contextual features, changing the MDL control factor, using speaker recognition 
scores and/or F0 values for grouping speakers to train voices, and applying speaker adaptation.  
Two GUIs were also developed for training and evaluating the speech synthesizers.  
Recommendations for future work include investigating how much speech data is needed to 
obtain an improvement when using an expanded model set, determining how much speech data 
is needed for speaker adaptation, and investigating the effects of using different speaker 
groupings to train the base model that is used for adaptation. 
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LIST OF ACRONYMS & GLOSSARY 
 

AF Articulatory Feature 
AFRL Air Force Research Laboratory 
ARL Army Research Laboratory 
CALLHOME a speech corpus of unscripted telephone conversations 
CMLLR constrained maximum likelihood linear regression 
CMU Carnegie Mellon University 
CSMAPLR Constrained Structural Aaximum-A-Posteriori Linear Regression 
EER Equal Error Rate 
F0 fundamental frequency 
Fisher a speech corpus of telephone conversations 
GMM Gaussian Mixture Model 
GUI Graphical User Interface 
GlobalPhone a multilingual text and speech database 
HMM Hidden Markov Model 
HSMM hidden semi-Markov model 
HTK Hidden Markov ToolKit 
HTK Cambridge University hidden Markov model toolkit 
HTS hidden Markov model based speech synthesis toolkit 
HUB4 a broadcast news speech corpus 
HDecode Cambridge University large vocabulary continuous speech recognizer 
ICSI International Computer Science Institute 
IPA International Phonetic Alphabet 
Julius an open source large vocabulary continuous speech recognition engine 
KLT Karhunen Loéve transformation 
LASER Language and Speech exploitation Resources 
LM Language Model 
MAP Maximum-A-Posteriori 
MDL Minimum Description Length 
MFCC Mel-Frequency Cepstral Coefficient 
MLP Multi-Layer Perceptron 
MSD Multi-Space Probability Distribution 
PER Phoneme Error Rate 
PLP Perceptual Linear Prediction 
ROVER Recognizer Output Voting Error Reduction 
SAT Speaker Adaptive Training 
SI Speaker Independent 
SONIC University of Colorado continuous speech recognizer 
SPTK Speech Signal Processing Toolkit 
SRover University of Brno implementation of recognizer output voting error reduction 
TDT4 phase four of the topic detection and tracking corpus 
TRANSTAC Translation System for Tactical Use 
VTLN Vocal Tract Length Normalization 
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WER  Word Error Rate 
WSJ0 phase one of the Wall Street Journal corpus 
WSJ1 phase two of the Wall Street Journal corpus 


